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Abstract. We suggest a method of singular terms regularization in a potential model of the NN interaction.
This method is free from uncertainties related to the usual cut-off procedure and is based on the fact that,
in the presence of sufficiently strong short-range annihilation, N and N never approach close enough to
each other. In such a case the low-energy scattering is shown to be fully determined by the OBEP tail,
while any details of the short-range core of the NN interaction are excluded from the observables. The
obtained results for S- and P -wave scattering lengths are in agreement with the well-established theoretical
models.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 21.30.-x Nuclear
forces – 21.30.Fe Forces in hadronic systems and effective interactions – 24.10.Ht Optical and diffraction
models

1 Introduction

During the last decades numerous nonrelativistic models
of the NN low-energy interaction [1–10] have been sug-
gested. The intriguing problem of the possible existence of
the so-called quasi-nuclear NN states [2,11] has strongly
stimulated the mentioned researches. The physical argu-
ments in favor of such states are the following. The inter-
action between N and N is expected to be more attractive
than the NN interaction, as it follows from the procedure
of G-conjugation [1]. Such a strong attraction should pro-
duce a spectrum of NN quasi-bound states. At the same
time the range of annihilation estimated from the position
of the singularity nearest to the threshold in the Feyn-
man annihilation diagrams turns out to be much smaller
than the range of the meson exchange forces. This means
that quasi-nuclear states could be narrow enough to be
observed experimentally. It was indeed discovered in the
Low-Energy Antiproton Ring (LEAR) experiments [12–
14] that certain partial cross-sections sharply increase with
energy decreasing down to the NN threshold (the so-
called P -wave enhancement) which could be a manifes-
tation of a narrow weakly bound state or resonance. This
conclusion was verified by experiments with antiprotonic
atoms [15,16] and by experimental studies of antiproton
annihilation at rest by the OBELIX Collaboration [17–
20]. The detailed review of mentioned issues can be found
in [21,22]. Recent experimental data [23] on J/ψ decay
into γpp̄ channel also indicate a strong enhancement near
the pp̄ threshold.
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However, the transparent physical picture of the quasi-
nuclear states has a significant drawback. The procedure
of G-conjugation yields in attractive terms in NN poten-
tial of the type −1/r3. It is well known, that attractive in-
verse power potentials −1/rs with s > 2 are singular [24],
i.e. the scattering problem with standard (zero) bound-
ary condition in the origin has no definite solution, while
the spectrum of the system is not bounded from below.
The usual way out is to impose that the singular behav-
ior at short distances is an artifact of certain approxima-
tions (for instance the approximation of point-like nucle-
ons, nonrelativistic approximation, etc). In the absence of
the self-consistent theory it is common practice to intro-
duce the phenomenological cut-off radius to regularize the
singular behavior of the model at short distance. However
the low-energy scattering observables change dramatically
with small variations of the cut-off radius (as long as we
deal with a real part of the NN potential) [25] and depend
on the details of the cut-off procedure, which seriously di-
minish the predictive power of the model. In fact it is not
clear if the quasi-nuclear near-threshold states are deter-
mined by the “physical part” of the OBEP, or they are
artifacts, produced by the “non-physical” singular part of
the interaction.

We suggest a model of NN interaction which is free
from the above-mentioned uncertainties of the cut-off pro-
cedure. We will show that the strong inelastic interaction
makes the low-energy scattering observables independent
of any details of the short-range core, as far as the particle
totally annihilates before it “falls to the center”.
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The mathematical basis of our approach is the state-
ment that an attractive inverse power potential of the
type −γs/rs with s ≥ 2 enables a unique solution of the
Schrödinger equation with the standard boundary condi-
tion when it gets an imaginary addition to the interaction
strength [26]. Curiously this is true even if such an addi-
tion is infinitesimal. It is shown that the scattering on the
singular potential regularized in such a way is equivalent
to the full absorption of the particles in the scattering
center. Encouraged by the early result of Dalkarov and
Myhrer [3], who introduced a full absorption boundary
condition at a certain inter-baryonic distance and suc-
cessfully described the low-energy NN scattering data,
we suggest a regular potential model of the NN interac-
tion, based on the OBE potential approach, but without
any cut-off.

The important feature of our approach is that the re-
flected wave is generated only by the medium and the
long-range part of the OBE potential, while part of the in-
coming flux which penetrates to smaller distances is fully
absorbed. This means that any information about the low-
energyNN scattering is determined by medium- and long-
range parts of the OBEP only. We show that this property
of the model is closely related to the phenomenon of the
reflection of a quantum particle from the fast-changing
attractive potential (the so-called quantum reflection).

We will demonstrate that the “singular” part of the
potential when modified by annihilation cannot produce
by itself any quasi-bound state. The known near-threshold
resonances, which are well reproduced by our model, are
determined by the long-range part of the OBEP. We cal-
culate the scattering lengths in S and P partial waves for
different values of spin, isospin and total momentum and
demonstrate that the obtained results are in good agree-
ment with the well-established theoretical models [7,8].

The paper is organized as follows. In the second section
we discuss the general properties of the attractive inverse
power potentials, regularized by an imaginary addition to
the interaction strength. The third section is devoted to
the construction of the regularized NN potential model.

2 Inverse power potentials with complex

strength

In this section we present main results concerning the
properties of inverse power potentials −γs/rs (s ≥ 2) with
complex strength γs = αs+iω. In the following we put the
mass M of the particle equal to 1/2. Let us first treat the
case s > 2. Near the origin we can neglect all the terms
of the Schrödinger equation, increasing slower than 1/r2.
We get the following expression for the wave function [27]:

Φ(r) =
√
r
(
H(1)

µ (z) + exp(2iδ0)H
(2)
µ (z)

)
, (1)

z =
2
√
γs

s− 2
r−(s−2)/2 , (2)

µ =
2l + 1

s− 2
, (3)

Here H
(1)
µ (z) and H

(2)
µ (z) are the Hankel functions of

order µ [28], l is the angular momentum, δ0 is a phase-shift
to be determined from the boundary condition. It is worth
mentioning that the variable z is a semiclassical phase.

As long as the interaction strength γs is real (ω = 0),
both independent solutions have the same order of singu-
larity in the origin and there is no obvious way to choose
their linear combination. Thus zero boundary condition
for the wave function in the origin does not supply us
with a unique solution of the Schrödinger equation. The
situation however changes when γ obtains an imaginary
addition ω 6= 0. Indeed, for ω > 0 the only physical solu-

tion is
√
rH

(1)
µ (z), which is regular in the origin, while the

second solution
√
rH

(2)
µ (z) exponentially diverges in the

origin. (For ω < 0 the physical solution is
√
rH

(2)
µ (z).) So

far in the case of ω 6= 0 the standard boundary condition
selects the unique physical solution. In the following we
will show that this statement is true even for infinitesimal
values of ω.

To demonstrate explicitly the reason for the different
behavior of the independent solutions in the origin, we
replace the inverse power potential at distance less than
r0 by the constant −γs/rs0, having in mind to make r0
tend to 0. Matching the logarithmic derivatives for the
“square-well” solution and the solution (1) at small r0,
one can get for δ0:

δ0 =
s

s− 2
p(r0)r0 , (4)

p(r0) =

√
αs + iω

r
s/2
0

. (5)

Now it is important that the interaction strength γs is
complex. In the limit r0 → 0 we obtain

lim
r0→0

Im δ0 =
s

s− 2
Im

√
αs + iω

r
(s−2)/2
0

→
{
+∞ if ω > 0 ,
−∞ if ω < 0 ,

(6)

which means, that exp(2iδ0) is either 0 or∞ and the linear
combination of the Schrödinger equation solutions (1) is
uniquely defined in the limit of zero cut-off radius r0:

lim
r0→0

Φ(r) =

{√
rH

(1)
µ (z) if ω > 0 ,√

rH
(2)
µ (z) if ω < 0 .

(7)

The above-described procedure clearly shows that the
reason for the different behavior of two solutions in the
origin comes from the fast increase of the potential, so
that the imaginary part of the phase-shift δ0 becomes in-
finite (6). Let us note here that vanishing of one of the
solutions and divergence of the other in the origin is an in-

trinsic property of the Hankel functions H
(1,2)
µ (z) of large

complex argument. This property is independent of the
details of the cut-off procedure, which we used here only
for the sake of clarity.

From the asymptotic expansion of the Hankel function
of big argument (small r),

H(1,2)
µ (z) '

√
2

πz
exp (±(iz − iπ/4− iµπ/2)) ,
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one can see that ω > 0 selects an incoming wave , which
corresponds to the full absorption of the particle in the
scattering center, while ω < 0 selects an outgoing wave,
which corresponds to the creation of the particle in the
scattering center.

As follows from (4) and (5) the above-mentioned con-
clusions are valid for any ω, including its infinitesimal
value (as long as s > 2). It means, that the sign of an
infinitesimal imaginary addition to the interaction con-
stant selects the full absorption or full creation boundary
condition (7). This boundary condition can be formulated
as condition for the logarithmic derivative:

lim
r→0

Φ′(r)

Φ(r)
= −i sign(ω)p(r) , (8)

where p(r) is the classical local momentum (5). (Com-
pare with the boundary condition for incoming (outgoing)
plane wave exp(∓ipr)′/ exp(∓ipr) = ∓ip.)

As soon as the solution of the Schrödinger equation is
uniquely defined, we can calculate the scattering observ-
ables. In particular we can now obtain the S-wave scat-
tering length for the potential −(αs ± i0)/rs (for s > 3):

a = exp(∓iπ/(s− 2))

( √
αs

s− 2

)2/(s−2)
Γ((s− 3)/(s− 2))

Γ((s− 1)/(s− 2))
.

(9)
The fact that, in spite of Im γs → ±0, the scattering

length has nonzero imaginary part is the manifestation of
the singular properties of the mentioned potential which
violates the self-adjointness of the Hamiltonian.

Let us compare the scattering length (9) with that of
the repulsive inverse power potential αs/r

s. One can get

arep =

( √
αs

s− 2

)2/(s−2)
Γ((s− 3)/(s− 2))

Γ((s− 1)/(s− 2))
. (10)

It is easy to see, that (9) can be obtained from (10)
simply by choosing the certain branch of the function(√
αs
)2/(s−2)

when passing through the branching point
αs = 0. These branches correspond either to full absorb-
tion or creation of the particles in the scattering center.
The scattering length in the regularized inverse power po-
tential becomes an analytical function of γs in the whole
complex plane of γs with a cut along the positive real axis.
More generally, the low-energy scattering observables are
uniquely defined for the inverse power potential with s > 2
when the strength parameter γs lies in the complex plane
with a cut along the positive real axis.

Note that the boundary condition (7) of the full ab-
sorption (creation) is incompatible with the existence of
any bound state. Indeed, one needs both the incoming and
the reflected wave to form a standing wave, corresponding
to a bound state. This means that the regularized inverse
power potential supports no bound states. This is also clear
from the above-mentioned fact that the scattering length
for a regularized attractive inverse power potential is an
analytical continuation of the scattering length of the re-
pulsive potential.

Let us now turn to the important case of the inverse
square potential −γ2/r

2 with γ2 = α2 + iω. The wave
function now is

Φ =
√
r
[
Jν+

(kr) + exp(2iδ0)Jν−(kr)
]
, (11)

ν± = ±
√

1/4− γ2 , (12)

where k is the momentum of the quantum particle, and
Jν± are the Bessel functions [28]. For simplicity we treat
the case of zero angular momentum l = 0, the extension of
the following results to the higher partial waves is straight-
forward. In the following we will be interested in the values
of α2 greater than critical, namely for l = 0 we consider
α2 > 1/4. We use the same procedure as treated before
of substituting the inverse power potential by a constant
value at small r0. Matching the logarithmic derivatives at
r0 we get for exp(2iδ0):

lim
r0→0

exp(2iδ0) ∼ r
ω/
√

α2−1/4

0 r
−2i
√

α2−1/4

0 .

It is clear, that due to the presence of imaginary addi-
tion ω we get Im δ0 → ±∞ when r0 → 0.

So far we come to the boundary condition

lim
r0→0

Φ(r) =

{√
rJν+

(kr) if ω > 0 ,√
rJν−(kr) if ω < 0 .

(13)

For the large argument this function behaves like

Φ ∼ cos(z − ν
±
π/2− π/4) .

In the limit ω → ±0 the corresponding scattering phase is

δ = i
sign(ω)π

2

√
α2 − 1/4 + π/4 . (14)

As one can see, the S-matrix S = exp(2iδ) is energy
independent. This means that regularized inverse square
potential supports no bound states. The regularized wave
function and phase-shift are analytical functions of γ2 in
the whole complex plane with a cut α2 > 1/4.

It is worth mentioning that in the above regulariza-
tion procedure we let the Hamiltonian be non–self-adjoint.
This is a warrantable extension, as long as we are inter-
ested in the problems where the loss of particles from the
initial channel is possible.

2.1 Regularization of a singular potential by a
potential of inferior order

Now we would like to determine if it is possible to reg-
ularize a real attractive inverse power potential of given
order s by an imaginary potential, which behaves in the
origin less singular than 1/rs. In other words we would
like to find the minimum power tmin of an infinitesimal
imaginary inverse power potential required for the regu-
larization of a given singular potential. The potential of
interest is a sum −αs/rs− iω/rt. From expression (6) one
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immediately comes to the conclusion that the regulariza-
tion is possible only if

t > s/2 + 1 .

So far for s > 2 the regularization of a given singular
inverse power potential −αs/rs is possible by adding the
potential iω/rt with ω → 0. This imaginary potential may
increase slower in the origin than the real one, as far as
tmin < s for s > 2.

This result establishes how “strong” should be the an-
nihilation in the origin to ensure the full absorption of the
particles in the presence of an attractive inverse power
potential.

2.2 Quantum reflection from the inverse power
potential

The phenomenon of the quantum reflection, i.e. over-
barrier reflection from the fast-changing attractive poten-
tial is an old-known quantum-mechanical effect [29,30].
Such a phenomenon plays a crucial role in the low-energy
scattering on regularized inverse power potential with an
absorptive core. Indeed, the particles, which are not re-
flected from the fast-changing part of the potential are
totally lost in its core. So far the scattering observables
can bring information only about the characteristic dis-
tance where quantum reflection occurs. Such a character-
istic distance would play a role of effective “annihilation”
radius for the scattering on regularized inverse power po-
tential with an absorbing core. It can be shown, that the
phenomenon of quantum reflection is closely connected to
the failure at certain distances of the WKB approxima-
tion applied to the low-energy scattering on the potential
of interest [30,31].

The WKB approximation holds if | ∂(1/p)
∂r | ¿ 1, where

p(r) is the local classical momentum. In case of zero-
energy scattering on regularized inverse power potential
with s > 2 this condition is valid for

r ¿ rsc ≡ (2
√
αs/s)

2/(s−2) .

(For s = 2 the semiclassical approximation is valid
only for α2 À 1.) The WKB approximation, consistent
with the boundary condition (7) for s > 2 is

Φ =
1√
p(r)

exp

(
i sign(ω)

a∫

r

p(r)dr

)
(15)

with p(r) from (5). This solution becomes accurate in the
limit r → 0. It follows from the above expression, that
in case the WKB approximation is valid everywhere, the
solution of the Schrödinger equation includes the incoming
wave only (for distinctness we speak here of absorptive
potential ω > 0). The corresponding S-matrix is equal
to zero, S = 0, within such an approximation. It is very
important that this result is independent of any details
of the inner part of the potential p2(r). It means that

any modification of potential at r ¿ rsc which keeps the
validity of the WKB approximation (15) does not change
the scattering observables.

The reflected wave can appear in the solution only in
the regions where (15) does not hold. Namely, the parti-
cles are reflected from those parts of the potential which
change sufficiently fast in comparison with the effective

wavelength |∂(1/p)
∂r | ≥ 1.

For the zero energy scattering and l = 0 this holds for
r ≥ rsc.

The reflection coefficient P ≡ |S|2, which shows the
reflected part of the flux has the following form in the
low-energy limit:

P = 1− 4k| Im a|,

where k =
√
E is the momentum of the incident particle

with energy E. This expression clearly shows, that for such
slow particles that k| Im a| ¿ 1, the quantum reflection
probability is close to unity. In the opposite limit of high

energies E À Esc ≡ αs/r
s
sc = (s/2)2s/(s−2)α

−2/(s−2)
s the

WKB holds everywhere and the S-wave reflection becomes
exponentially small.

An important conclusion is that any information,
which comes from the scattering on the absorptive singu-
lar potential is due to the quantum reflection. The distance
where WKB approximation fails plays a role of effective
“annihilation” radius. The low-energy scattering observ-
ables are sensitive to the potential details above this ra-
dius and practically independent of any “smooth” modifi-
cation (i.e. modification which does not violate the WKB
approximation) of the potential below this radius.

2.3 Near-threshold states

In the above we have found that there are no bound states
in the inverse power potential with a complex strength (in-
cluding the case of the infinitesimal imaginary part). The
physical reason is the absence of reflected wave from the
absorptive core of the inverse power potential. In this sub-
section we study how the spectrum of the near-threshold
states of a regular potential U(r) (i.e. a potential which
increases in the origin slower than 1/r2) is modified by a
potential which has inverse power behavior −(αs+ i0)/rs

near the origin. The cases when such a modification is
small are of special interest to us.

2.3.1 Penetration through the centrifugal barrier

It can be expected that the effect of the inverse power core
could be small when the (regularized) inverse power po-
tential is separated from the regular one by the centrifugal
barrier. In this case the shift and width of the correspond-
ing states would be determined by the centrifugal-barrier
penetration probability. In fact, if αs is small enough,
there is a range of r where

U(r)¿ αs/r
s ¿ (l(l + 1)− α2)/r

2 . (16)
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Let us suggest that the regular potential is approximately
constant in the mentioned range of r, so that U(r) ≈ p2

0.
Then from (16) we get

p0α
1/(s−2)
s ¿ 1 . (17)

For such values of r the wave function is

Φ ∼
√
r(Jν(p0r)− tan(δs)Yν(p0r)) , (18)

Yν =
Jν cos(νπ)− J−ν

sin(νπ)
, (19)

ν =
√

(l + 1/2)2 − α2 ,

here δs is a short-range contribution to the phase shift,
produced by the inverse power potential −(αs + i0)/rs in
the presence of the regular potential U(r).

For small r ∼ α1/(s−2)
s the wave function is determined

by the regularized inverse power and the centrifugal po-
tential:

Φ ∼
√
rH(1)

η (
2
√
αs

s− 2
r−(s−2)/2) ,

η = 2ν/(s− 2) .

Matching the logarithmic derivatives and taking into
account (17), we get for the phase shift

δs = −Bν(
p0α

1/(s−2)
s

2(s− 2)2/(s−2)
)2ν exp(−iπη) ,

where

Bν = sin(πν)
Γ(1− ν) Γ(1− η)
Γ(1 + ν) Γ(1 + η)

.

The above-presented expression for Re δs is accurate,
strictly speaking, only in case 2l+ 3 < s [32]. The correc-
tion to the real part of the phase shift which comes from
large distances can be calculated as the first order of a
distorted-wave approximation with respect to the inverse
power potential.

At the same time δs has the positive imaginary part ac-
cording to the “inelastic” character of regularized inverse
power potential:

Im δs = (−1)l( p0α
1/(s−2)
s

2(s− 2)2/(s−2)
)2l+1Bν . (20)

The near-threshold states produced by the regular po-
tential U(r) are perturbed by the regularized (absorptive)
inverse power potential. In particular they get the widths,
which in our case of small δs are proportional to Im δs.

If the near-threshold states spectrum in U(r) has a
semiclassical character, then from the quantization rule

∫ √
En + δEn − U (r)dr + δs = const

we get
δEn = −δsωn , (21)

where ωn is a semiclassical frequency:

ωn =

(∫
(En − U (r))−1/2dr

)−1

.

Taking into account (20), we get for the width of the
state

Γn/2 = (−1)l+1(
p0α

1/(s−2)
s

2(s− 2)2/(s−2)
)2l+1Bνωn .

Thus in the above-mentioned case the modification
of the near-threshold spectrum of the regular potential
U(r) by the regularized inverse power potential results
in shifting and inelastic broadening determined by the

small parameter (p0α
1/(s−2)
s )2l+1, which characterizes the

centrifugal-barrier penetration probability.

2.3.2 Quantum reflection states

We will treat here an interesting case, i.e. when there is
no barrier separation between the regularized (absorptive)
inverse power potential −(αs+ i0)/rs and the regular po-
tential U(r). However, the existence of the narrow near-
threshold states is still possible. The reason why in such a
case rather narrow states can survive is the already men-
tioned quantum reflection from those parts of attractive
potential, which change sufficiently fast.

To illustrate this idea, let us suppose that the full in-
teraction potential W (r) has the following simple form:

W (r) =

{
−(αs + i0)/rs if r < R0 ,

−(αs/Rs
0)Θ(R− r) if r ≥ R0 .

(22)

This potential can be treated as a shallow and wide
square well with depth αs/R

s
0 and width R modified

near the origin by the regularized inverse power potential
−(αs+i0)/rs, which is matched with the above-mentioned
square well at distance R0. We are interested to verify
whether the existence of narrow states in such a potential
is possible. For the moment we will restrict our treatment
to the S-wave case only.

Let us suppose that R0 > rsc ≡ (2
√
αs/s)

2/(s−2). Pre-
viously we showed that the WKB approximation, applied
to the zero energy scattering on the regularized singular
potential fails for r > rsc. Thus in our problem there is a
domain rsc < r ≤ R0 of WKB failure. We will show that
this domain acts similar to the barrier in the sense that it
is responsible for the reflected wave generation.

In the vicinity of R0 the zero energy wave function in
regularized inverse power potential has the form

Φ1(r) ∼ 1− r/a .

Here a is the complex scattering length (9) in the regu-
larized inverse power potential −(αs + i0)/rs. The wave
function in the square-well potential is

Φ2(r) ∼ sin(knr + ϕn) .
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Here k2
n = αs/R

s
0 − En, where En is the energy of the

near-threshold state, while ϕn is the phase-shift to be de-
termined. Matching the logarithmic derivatives at point
R0 and expecting that |knR0 + ϕn| ¿ 1, we find

ϕn = −kna .

To ensure the existence of the near-threshold state of
interest (such that |kn(R0 − a)| ¿ 1), the width of the
square well R should be big enough. The required charac-
teristic value Rc can be obtained from the condition of the
state appearance in the square well of the depth αs/R

s
0:

√
αs/Rs

0Rc = π/2 .

Matching the logarithmic derivatives of the square well
wave function and the decaying wave at point R, we get
for the bound energy En = −κ2

n:

kn cot(kn(R− a)) = −κn ,

which for κn ¿ kn gives

kn '
√
αs/Rs

0 , (23)

Reκn = k2
n(R−Rc − Re a) , (24)

Imκn = − k2
n Im a . (25)

The corresponding S-matrix pole in the complex
k-plane is z = iκn. Depending on the sign of Reκn the
mentioned pole can be either in the upper half-plane,
which corresponds to the bound state, or in the lower half-
plane, which corresponds to the virtual state. The width
of such a state is

Γ/2 = k4
n Im a(R−Rc − Re a) .

The effect of the regularized singular potential is de-
termined by the parameter kn Im a. The physical sense
of such a parameter can be easily established. In fact, the
S-matrix corresponding to the scattering with a small mo-
mentum k on the regularized inverse potential is

S = 1− 2ika

The intensity of the reflected wave is

P = |S|2 = 1− 4k| Im a| .

The smaller k Im a is the higher is the probability of
the quantum reflection and the less is the influence of the
regularized singular potential on the near-threshold spec-
trum of the regular potential.

So far the narrow states can exist only if kn| Im a| ¿ 1.
If the square well is chosen so deep that R0 < rsc,

then there is no domain of WKB failure, the probability
of quantum reflection is negligible and no narrow states
can be formed.

From the above treatment we can derive the estima-
tion for the maximum binding energy of the narrow quasi-
bound state in a regular potential U(r) modified by a reg-
ularized inverse power potential.

Let Rsc be the distance where the WKB failure takes
place for the full interaction W (r) = U(r)− (αs + iω)/rs.
As we have shown the effect of the WKB failure domain is
the partial reflection. Thus, for the purpose of the qualita-
tive estimation, we can replace this domain by the bound-
ary condition of full reflection at Rsc. In other words, we
should look for the bound states in the following truncated
potential:

Wtr(r) =

{
+∞ if r < Rsc ,
W (r) if r ≥ Rsc .

(26)

The ground-state energy Etr in such a potential gives an
approximation for the lowest (quasi-)bound state energy
in the full potential W (r).

Summarizing the above results we can expect the exis-
tence of narrow quasi-bound state if the regular potential,
responsible for the state formation, is separated from the
regularized inverse power potential either by the centrifu-
gal barrier or by the domain of WKB failure.

3 Optical model of the NN interaction

It is clear from the above results that the model potential,
which behaves at short distance like−(α+iω)/r3 enables a
unique solution of the scattering problem. Such a potential
is absorptive and accounts not only for elastic, but for
inelastic processes as well. The above statements are true
even for infinitesimal value of ω. As we have shown such
an infinitesimal imaginary addition is equivalent to the
full absorption boundary condition in the origin.

We first apply this regularization procedure to the NN
potential in the 13P0 state. The NN interaction in this
state includes singular terms. This particular state is also
interesting due to the presence of the near-threshold res-
onances, predicted by most of the theoretical models. We
choose the version of the real OBE potential from the
Kohno-Weise model [7] accompanied by the imaginary
component −iω/r3 with ω → 0:

V = VKW − iω/r3 .

Here VKW is the real part of the Kohno-Weise potential
without any cut-off.

The scattering volume in the 13P0 T = 0 state calcu-
lated in the limit ω → 0 turns out to be

ar = −7.66− i4.87 fm3 ,

while the value obtained within the Kohno-Weise model
with a cut-off rc = 1 fm is

aKW = −8.83− i4.45 fm3 .

As we can see, both scattering volumes are rather close.
The above procedure can be successfully applied to any
NN state which includes attractive singular terms.

An interesting question is wether it is possible to de-
scribe the whole set of low-energy scattering data within a
model of OBE potential accompanied by the assumption
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Table 1. S- and P -wave scattering lengths.

State DR1 DR2 KW Reg
11

S0 0.02−i1.12 0.1−i1.06 −0.03−i1.35 −0.08−i1.16
31

S0 1.17−i0.51 1.2−i0.57 1.07−i0.62 1.05−i0.55
13

S1 1.16−i0.46 1.16−i0.47 1.24−i0.63 1.19−i0.64
33

S1 0.86−i0.63 0.87−i0.67 0.71−i0.76 0.7−i0.65
11

P1 −3.33−i0.56 −3.28−i0.78 −3.36−i0.62 −3.19−i0.59
31

P1 0.92−i0.5 1.02−i0.43 0.71−i0.47 0.81−i0.46
13

P0 −9.58−i5.2 −8.53−i3.51 −8.83−i4.45 −7.67−i4.74
33

P0 2.69−i0.13 2.67−i0.15 2.43−i0.11 2.46−i0.15
13

P1 5.16−i0.08 5.14−i0.09 4.73−i0.08 4.75−i0.15
33

P1 −2.08−i0.86 −2.02−i0.7 −2.17−i0.95 −2.09−i0.79
13

P2 0.04−i0.57 0.22−i0.56 −0.03−i0.88 −0.12−i0.82
33

P2 −0.1−i0.46 0.05−i0.55 −0.25−i0.39 −0.14−i0.39

of full absorption of the particles in a small volume around
the origin.

We suggest the following modification of the NN po-
tential model:

Ṽ = VKW − i
A

r3
exp(−r/τ) . (27)

The parameters of the imaginary part of the potential
were taken as follows: A = 4.7 GeV fm2, τ = 0.4 fm. We
have calculated the values of S and P scattering lengths in
such a model potential. The obtained results, (indicated
as Reg) together with the results of two Dover-Richard
models, (DR1 and DR2), and the Kohno-Weise model
(KW) taken from [33] are presented in table 1. In this
table the S-wave scattering lengths are given in fm, while
the P -wave scattering volumes are given in fm3.

One can see rather good agreement between the re-
sults obtained within the suggested optical model without
cut-off and the cited above versions of Kohno-Weise and
Dover-Richard models.

Let us underline here, that there are no reasons to be-
lieve that the physical interaction indeed has the above
form at small distances. The physical sense of the sug-
gested model is that the low-energy scattering observables
are independent of the the short-range interaction details,
as long as such interaction includes the strong inelastic
component. These observables can be obtained from the
solution of the Schrödinger equation, formally applied to
the short distances.

3.1 Near-threshold resonances

The critical question of the quasi-nuclear model is whether
the strong annihilation could be compatible with the ex-
istence of narrow quasi-bound NN states. It follows from
the above-performed analysis of our regularized potential
model that only few performed (if any) near-threshold
quasi-bound states or resonances can survive, while any
deeply bound states are excluded.

We examined the S-matrix poles in the 13P0 state. The
real and imaginary parts of the scattering volume in such
a state as they appear in our calculations are rather large
a = −7.67− i4.74 fm3. Such a big value of the scattering
volume could be an indication of the near-threshold state
or resonance.

In fact we found that the S-matrix poles nearest to the
threshold are situated in the third and fourth quadrant of
the complex k-plane:

k+ = 44.8− i54.3MeV/c k− = −58.4− i73.8MeV/c .

In the absence of annihilation these poles should be
symmetrical with respect to the imaginary axis and cor-
respond to the near-threshold resonance. The short-range
annihilation breaks the left-right symmetry between such
poles. Such near-threshold poles will manifest themselves
by a rapid increasing of the related amplitude and the
cross-section with the energy decreasing down to the
threshold.

The found resonance belongs to the above-mentioned
“quantum reflection” case. Indeed, the analysis of the NN
potential (27) (into which the centrifugal term is included)
in the 13P0 state shows that the centrifugal barrier is over-
come by the attractive singular terms. Thus there is no
barrier between the absorptive core and the regular part
of the interaction. It was found that the WKB failure con-
dition takes place for r ≥ Rsc = 1.4 fm. This distance
plays the role of effective annihilation radius in the 13P0

state. To judge about the spectrum, we examine the po-
tential truncated at point Rsc ' 1.4 fm (26). One can
check that such a potential supports no bound states and
the S-matrix pole nearest to the threshold indeed corre-
sponds to the resonance.

Thus the P -wave enhancement is explained in the pre-
sented model by the existence of the near-threshold res-
onance. It should be specially mentioned that no deep
bound states with given quantum numbers could exist in
our model in spite of the strong NN attraction.

It is worth mentioning that the suggested regulariz-
ing procedure can be applied to any OBEP-based optical
model of the NN low-energy interaction.

4 Conclusion

We have found that scattering observables are insensi-
tive to the details of the short-range interaction, if such
an interaction includes a strong inelastic component. The
corresponding scattering amplitudes can be derived from
the solution of the Schrödinger equation, formally applied
to the short distances. Mathematically this means that
the singular attractive terms of the NN potential can
be regularized by an imaginary addition to the interac-
tion strength. We analyzed the main properties of such
a regularization. In particular it was found that the in-
verse power potential regularized in the mentioned way
supports no bound states. The low-energy scattering am-
plitude on such a potential is determined by the quantum
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reflection from the region, where the WKB approxima-
tion fails (the potential tail). The mentioned formalism
was used to build an optical model of the NN low-energy
interaction free from uncertainty, related to the cut-off pa-
rameter. The good agreement with the results, obtained
within well-established optical models, was demonstrated.
We proved that no deep quasi-bound states were possible
within our model. The spectrum of narrow quasi-nuclear
states is concentrated near the threshold. In particular,
we demonstrated the existence of the near-threshold res-
onance in the 13P0 state, responsible for the P -wave en-
hancement. It is argued that the existence of such res-
onances is possible due to the phenomenon of quantum
reflection from those parts of NN potential which change
sufficiently fast. These domains of the WKB failure play
a role of effective barrier between the regular part of the
interaction and the absorptive singular core.

The research was performed under the support of the Russian
Foundation for Basic Research grant 02-02-16809.
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